Л.Я. Окунев
Эта книга предназначена для студентов педагогических институтов и университетов и в отношении как характера, так и плана изложения во многом существенно отличается от моего учебника „Высшая алгебра", выдержавшего несколько изданий. Не останавливаясь на деталях, отмечу следующее.
В главу II внесен ряд методических улучшений, позволяющих, на мой взгляд, более отчетливо изложить линейную зависимость /г-мерных векторов.
Поскольку в главе IV излагается общая теория многочленов над произвольным числовым полем, я счел целесообразным начать эту главу с комплексных чисел. Материал этой главы подвергся основательной переработке.
Глава V посвящена основной теореме алгебры и вопросу решения алгебраических уравнений в радикалах. В § 33 и 34 этой главы дается представление о разрешимости алгебраических уравнений в радикалах и рассматриваются уравнения третьей и четвертой степени, а в § 35 излагаются необходимые и достаточные условия разрешимости уравнений третьей степени в квадратных радикалах. Затем эти условия применяются к некоторым классическим задачам из теории геометрических построений. Заключительный параграф (§ 36) главы V содержит некоторые исторические сведения, относящиеся к вопросу решения уравнений в радикалах, а также краткое изложение идеи метода Лобачевского приближенного вычисления комплексных корней.
Глава VI посвящена численному решению алгебраических уравнений. При этом способы Ньютона и прямолинейного интерполирования излагаются в тесной связи с методом итераций, что мне кажется вполне оправданным.
Глава VII написана мною заново. В нее я включил параграфы, посвященные результанту и исключению неизвестного из системы двух алгебраических уравнений высших степеней с двумя неизвестными. Понятие результанта вводится здесь по Сильвестеру и с меньшей громоздкостью. Попутно отмечу, что лемма о высшем члене произведения двух многочленов излагается уже в § 42, так как она используется не только для доказательства основной теоремы о симметрических многочленах, но и для простого доказательства теоремы об отсутствии делителей нуля в. кольце многочленов от нескольких неизвестных над числовым полем. Доказательство леммы проводится методом математической индукции.
В конце книги помещено приложение, посвященное вопросу неразрешимости алгебраических уравнений в радикалах. Это
приложение уже выходит за пределы программы курса высшей алгебры и по своему содержанию труднее, чем предшествующие
главы книги. Оно предназначено для читателей несколько более узкого круга, желающих углубить и дополнить свои знания по высшей алгебре. Изложение я здесь сознательно сделал более лаконичным,—это будет способствовать более
активному и глубокому восприятию материала.
В книге содержится ряд упражнений, необходимых для усвоения курса.
Л.Я. Окунев
Этот задачник предназначен для студентов физико-математического факультета педагогических институтов и содержит задачи, посвященные теории определителей, общей теории систем линейных уравнений с несколькими неизвестными, теории матриц, группам, кольцам и полям, комплексным числам, многочленам от одного неизвестного, алгебраическим расширениям и решениям алгебраических уравнений в квадратных радикалах, теории симметрических многочленов и теории исключения. Наряду с упражнениями, предназначенными для овладения общих приемов решения типовых задач, в сборнике имеются задачи, содействующие лучшему усвоению теоретического материала, а также задачи, являющиеся обобщением и углублением задач курса элементарной алгебры.
В.А. Ильин, В.А. Садовничий, Б.Х. Сендов
Учебник представляет собой вторую часть (ч. 1 - 1985 г.) курса математического анализа, написанного в соответствии с единой программой, принятой в СССР и НРБ. В книге рассмотрены теория числовых и функциональных рядов, теория кратных, криволинейных и поверхностных интегралов, теория поля (включая дифференциальные формы), теория интегралов, зависящих от параметра, и теория рядов и интегралов Фурье. Особенность книги - три четко отделяемых друг от друга уровня изложения: облегченный, основной и повышенный, что позволяет использовать ее как студентам технических вузов с углубленным изучением математического анализа, так и студентам механико-математических факультетов университетов.
В.А. Ильин, В.А. Садовничий, Б.Х. Сендов
Учебник представляет собой первую часть курса математического анализа для высших учебных заведений СССР, Болгарии и Венгрии, написанного в соответствии с соглашением о сотрудничестве между Московским, Софийским и Будапештским университетами. Книга включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальное и интегральное исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих переменных и теорию неявных функций.
А.Г. Курош
Книга обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств и жордановой нормальной формы матрицы.
Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым стилем.
Г.М. Фихтенгольц
Третий, заключительный том содержит подробное изложение таких разделов дифференциального и интегрального исчисления, как теория кратных, криволинейных и поверхностных интегралов, элементы векторного анализа, теория функций ограниченной вариации и интеграл Стилтьеса, ряды и интегралы Фурье. Использование простого геометрического языка значительно облегчает восприятие текста; вместе с тем многие сложные теоретические вопросы изложены полнее, чем в любом другом учебном издании. Особое внимание уделено приложениям общей теории: большое количество конкретных формул и фактов, примеров и задач как чисто математического, так и прикладного характера превращает «Курс... » в уникальное учебное пособие, полезное студентам негуманитарных вузов, которым оно непосредственно предназначено, а также математикам, физикам, инженерам и другим специалистам, использующим математику в своей работе.
Первое издание вышло в 1949 г.
Г.М. Фихтенгольц
Второй том «Курса...» посвящен теории интеграла от функции одной вещественной переменной и теории рядов и предназначен, прежде всего, для студентов первых двух курсов негуманитарных вузов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра, и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера-Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др. Являясь одним из лучших систематических учебников по интегральному исчислению и, одновременно, уникальной коллекцией конкретных фактов, связанных с рядами и
интегралами, данная книга, безусловно, будет полезна как учащимся, так и преподавателям высшей математики, а также специалистам различных профилей, использующим математику в своей работе, в том числе, математикам, физикам и инженерам.
Первое издание вышло в 1948 г.
Г.М. Фихтенгольц
Фундаментальный учебник по математическому анализу, выдержавший множество изданий и переведенный на ряд
иностранных языков, отличается, с одной стороны, систематичностью и строгостью изложения, а с другой - простым языком,
подробными пояснениями и многочисленными примерами, иллюстрирующими теорию. "Курс..." предназначен для студентов университетов, педагогических и технических вузов и уже в течение длительного времени используется в различных
учебных заведениях в качестве одного из основных учебных пособий. Он позволяет учащемуся не только овладеть теоретическим материалом, но и получить наиболее важные практические навыки. "Курс.." высоко ценится математиками как
уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
Первое издание вышло в 1948 г.
К.Н. Лунгу, В.П. Норин, Д.Т. Письменный, Ю.А. Шевченко, С.Н. Федин
Книга является второй частью вышедшего ранее и выдержавшего несколько изданий «Сборника задач по высшей математике». Сборник содержит три с лишним тысячи задач по высшей математике, охватывая материал, обычно изучаемый во II—IV семестрах технических вузов.
По сути, эта книга — удобный самоучитель, который позволит студенту быстро и эффективно подготовиться к экзаменационной сессии. Этому способствуют необходимые теоретические пояснения ко всем разделам сборника, детально разобранные типовые задачи, изрядное количество разнообразных заданий различных уровней сложности для самостоятельного решения, а также наличие контрольных работ, устных задач и «качественных» вопросов.
Книга будет полезна студентам младших курсов и преподавателям вузов для проведения семинарских занятий.
К.Н. Лунгу, Д.Т. Письменный, С.Н. Федин, Ю.А. Шевченко
Сборник содержит свыше трех с половиной тысяч задач по высшей математике. Ко всем разделам книги даны необходимые теоретические пояснения.
Детально разобраны типовые задачи, приведено изрядное количество разнообразных заданий различных уровней сложности для
самостоятельного решения. Наличие в сборнике контрольных работ, устных задач и «качественных» вопросов позволит студенту подготовиться к экзаменационной сессии. Книга охватывает материал по линейной алгебре, аналитической геометрии, основам математического анализа и комплексным числам.
Книга будет полезна студентам младших курсов и преподавателям вузов.
А.И.Кибзун, Е.Р.Горяинова, А.В.Наумов, А.Н.Сиротин
Книга предназначена для начального ознакомления с основами теории вероятностей и математической статистики и развития навыков решения практических задач. Основное внимание уделяется краткости изложения полного курса «Теории вероятностей и математической статистики», состоящего из теоретического и практического материала. Структура изложения максимально приближена к лекционным и практическим занятиям. Пособие может одновременно играть роль учебника, задачника и справочника. Для преподавателей ВУЗов, инженеров и студентов технических и экономических специальностей.
В.Е. Гмурман
Книга (8-е издание 2002 г.) содержит в основном весь материал программы по теории вероятностей и математической статистике. Большое внимание уделено статическим методам обработки экспериментальных данных. В конце каждой главы помещены задачи с ответами.
Предназначается для студентов вузов и лиц, использующих вероятностные и статистические методы при решении практических задач.
Д.Т. Письменный
Настоящий курс лекций предназначен для всех категорий студентов высших учебных заведений, изучающих в том или ином объеме высшую математику.
Книга содержит необходимый материал по всем разделам курса высшей математики (линейная и векторная алгебра, аналитическая геометрия, основы математического анализа), которые обычно изучаются студентами на первом втором курсах вуза, а также дополнительные главы, необходимые при изучении специальных курсов (двойные, тройные, криволинейные и поверхностные интегралы, дифференциальные уравнения, элементы теории поля и теории функций комплексного переменного, основы операционного исчисления).
Изложение теоретического материала по всем темам сопровождается рассмотрением большого количества примеров и задач, ведется на доступном, по возможности строгом языке.
Пособие поможет студентам освоить курс высшей математики, подготовиться к сдаче зачетов и экзаменов по математическим дисциплинам.
Г.Н. Берман
Сборник содержит систематически подобранные задачи и упражнения к основным разделам курса математического анализа. Большинство параграфов для удобства пользования подразделено на части. Группам задач с однородным содержанием предшествует общее указание. Перед задачами физического содержания даются нужные справки по физике.
Б.П. Демидович
В сборник (11-е изд. -1995 г.) включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение анализа; дифференциальное исчисление функций одной переменной; неопределенный и определенный интегралы; ряды; дифференциальное исчисление функций нескольких переменных; интегралы, зависящие от параметра; кратные и криволинейные интегралы. Почти ко всем задачам даны ответы. В приложении помещены таблицы.
Для студентов физических и механико-математических специальностей высших учебных заведений.